

SENTINEL (Sensor Intelligent Emissions Locator): A Quality Assurance Application for Sensors

Megan MacDonald, Eben Thoma, Wyatt Champion, Ingrid George US EPA Office of Research and Development, Center for Environmental Measurement and Modeling

Other Project Collaborators: EPA R4 (Jake Carpenter, Ryan Brown, Daniel Garver), Stephen Pfeiffer, Louisville Metro Air Pollution Control District (Billy Dewitt, Travis Velkly, David Becker), Jacobs Technology (Brittany Thomas, Garret Wiley), Sensit Technologies (Jacob Melby, Jason Gu)

The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the US EPA. Any mention of trade names, products, or services does not imply an endorsement by the US Government or EPA. EPA does not endorse any commercial products, services, or enterprises.

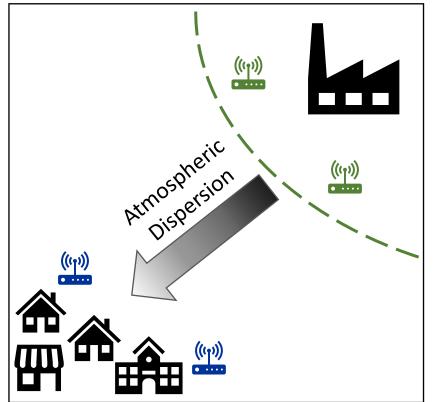
Sensors Quality Assurance (QA) Workshop | July 26, 2023

Presentation Outline

- Next Generation Emissions Measurements (NGEM)
 - Fenceline vs. community deployments
 - VOC fenceline sensors (SPods)
 - Sensor pre-deployment and in-field QA
- SENTINEL fenceline sensor data analysis app
 - Manual & automatic QA
 - Visualization and analysis
 - Metadata integration (canisters, meteorological data)
 - QA tables
- SENTINEL App Status

Next Generation Emissions Measurements (NGEM)

Use new measurement technologies to reduce emissions, enhance worker safety, improve air quality, and support community wellbeing



Fenceline/In-plant vs. In-community Deployment

Fenceline/In-plant Sensors Higher, faster source signal

Application	Purpose	Sensor/Instrument Needs				
Fenceline/ In-plant	Detect and characterize VOC emissions	 Fast sensor response is important Application-specific accuracy/ precision VOC chemical speciation not as important 				
In-Community	Quantify ambient VOC levels	 Fast sensor response not as important Precise and accurate VOC measurements required Speciation is helpful to understand source contributions 				

VOC = Volatile Organic Compound

In-Community Sensors Lower, slower source signal In-community Monitoring

2021 Sensor Comparison Presentation

Google Earth

Fenceline Air Monitoring Rule 1180

• • • • • •

(((יןי))) •••••

Fenceline

.

• • • • •

Emission (Not a real emission)

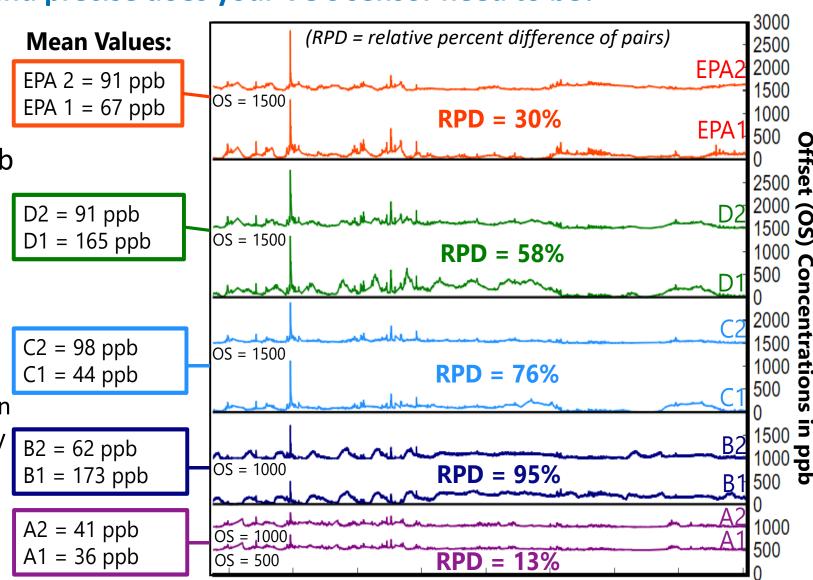
(((1))) •••••

0)

In-plant Leak Detection

Leak Detection and Repair Report

0 ...

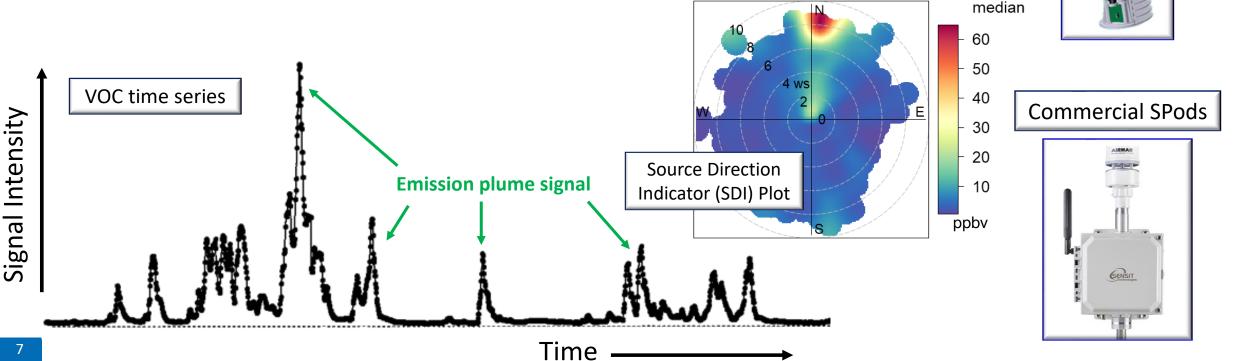


VOC Sensor Side by Side Comparisons

How accurate and precise does your VOC sensor need to be?

- 5 sensor manufacturers
 - No baseline correction applied
- VOC sensors can vary by >100 ppb
- Baseline drift is a key factor
- Analysis approaches can depend on proximity to source:
 - Fenceline can use simple baseline correction to eliminate drift and isolate emission plumes
 - **In-Community** deployments contain lower VOC signal levels, so accuracy and precision are more important

Dec 20 Dec 22 Dec 24 Dec 26 Dec 28 Dec 30 Jan 1 Jan 3


Jan 5

VOC Fenceline Sensor Pod (SPod)

EPA Prototype SPod

- SPods collect data as a time series of VOC signal and wind direction
- Signal events occur when emission plume passes over SPod
- Signal disappears when the wind direction shifts slightly
- Combined VOC and wind data inform source location
- Baseline VOC levels are less important (focus on emission plume signal)

Sensor Pre-deployment and In-field QA

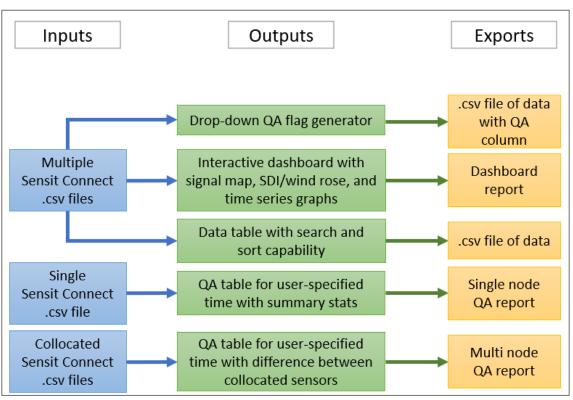
- EPA SPod SOP describes setup and use
 - Full calibrations
 - In-field bump tests
- Compound Response Factors (RF)
 - Can the sensor detect the nearby source?
 - Isobutylene is a reference gas (RF = 1)
 - Higher RF = lower sensor sensitivity to that compound (more difficult to detect)
 - Many emission plumes are a mixture of RFs
 - Triggered canister acquisitions can confirm the compounds in an observed VOC plume

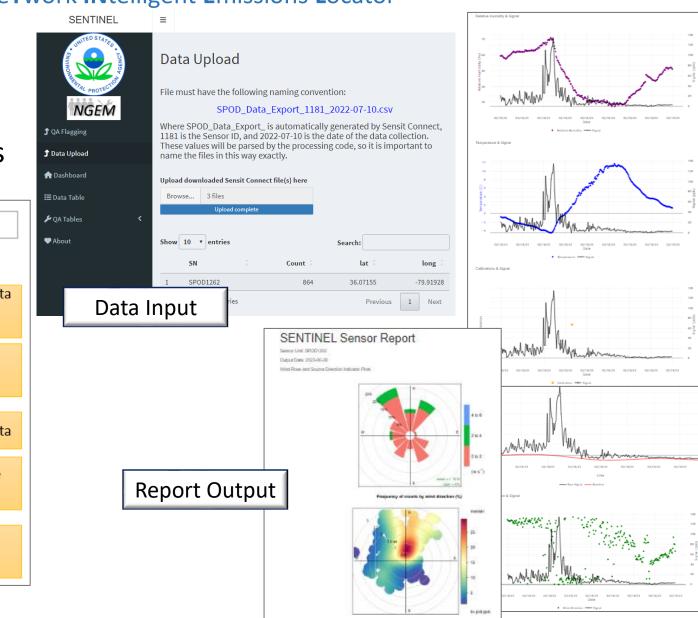
Complete list of RF values

2019 SPod Research Study

2022 SPod Research Study

Example of SPod 10.6eV Response Factors


Chemical Name	Ionization Energy	10.6 eV RF		
Benzene	9.24	0.5		
Xylenes	8	0.5		
1,3 Butadiene	9.07	0.8		
Isobutylene	9.24	1		
Cyclohexane	9.98	1.3		
Vinyl chloride	9.99	2.1		
Methane	12.51	Zero Response		



SENTINEL App

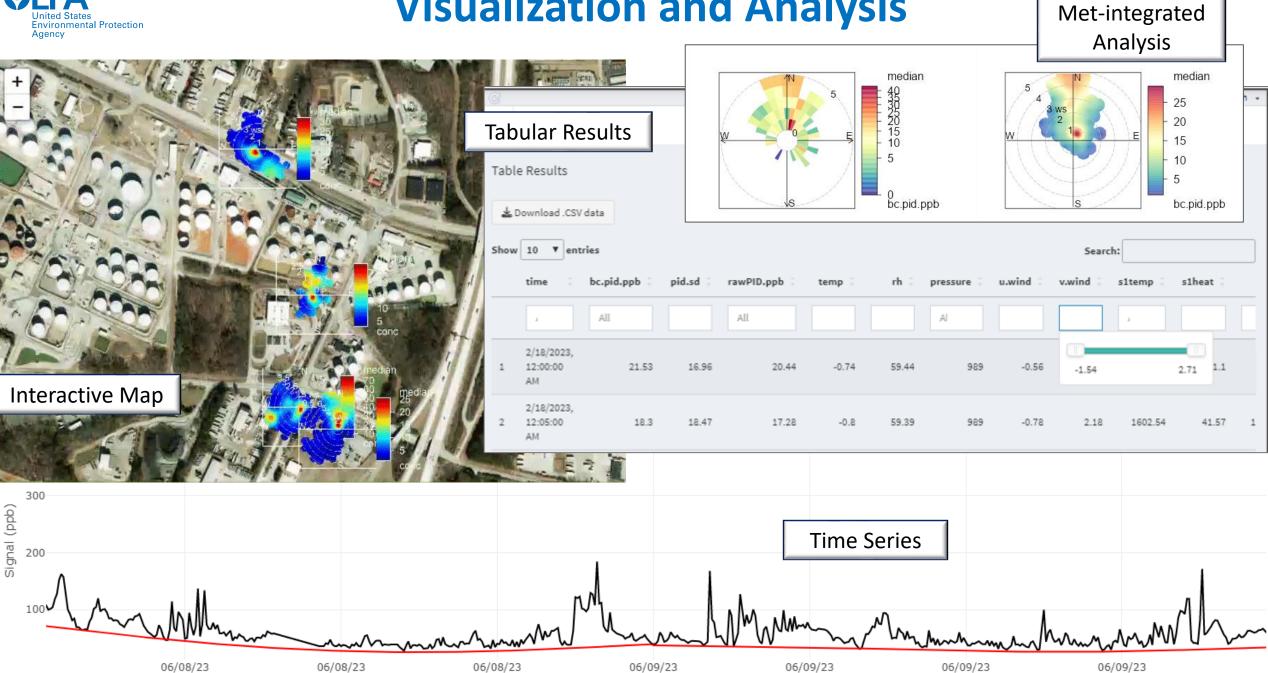
SENTINEL = SEnsor NeTwork INtelligent Emissions Locator

- R Shiny App
- Input raw files for QA or Analysis
 - Multiple or single day
- Output reports and processed data files

Manual & Automatic QA Features

QA column appended to data files that contain a flag if there is a QA issue

100: Calibration
102: Interferance
103: Maintenance
104: Malfunction
105: Other
106: Wind Direction Interference (use for blocked wind directions) *Sort by wind direction
107: Wind Direction Error (use for misaligned anemometer): Use text input box below:
Enter addition to WD (deg.)
0


Manual Flags (100 – 107)

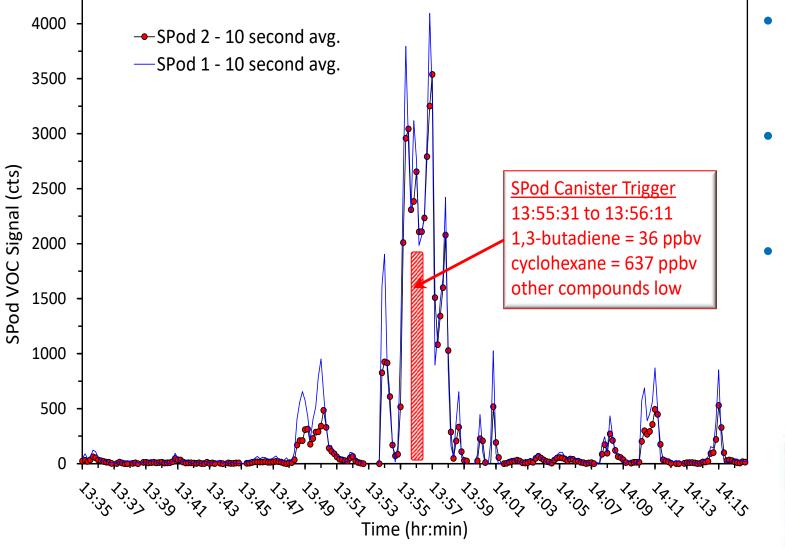
- Flag user defined events that code can't detect
- Option to input wind corrections to WD column
- Add lat/long values

Note: changing the wind calc will reset QA flags, do this first.		IS	trig.trig_value	trig.trig_activeFlag	trig.trig_eventFlag	lat	long	time	QA	SN
	19	207			204	0.00	0.00	2023-03-07 00:03:09	0	1261
	20	207			204	0.00	0.00	2023-03-07 00:03:19	0	1261
 Automatic Flags (108 – 115) 	21	207			204	0.00	0.00	2023-03-07 00:03:29	1 0 0	1261
	22	207			204	0.00	0.00	2023-03-07 00:03:39	1 0 2	1261
 Missing values 	23	207			204	0.00	0.00	2023-03-07 00:03:49	1 0 3	1261
 Repeated values 	24	207			204	0.00	0.00	2023-03-07 00:03:59	1 0 4	1261
•	25	207			204	0.00	0.00	2023-03-07 00:04:09	1 0 5	1261
 Humidity swings 	26	207			204	0.00	0.00	2023-03-07 00:04:19	1 0 6	1261
 Off-screen high/low values 	27	207			204	0.00	0.00	2023-03-07 00:04:29	1 0 7	1261
	28	207			204	0.00	0.00	2023-03-07 00:04:39	0	1261
	29	207			204	0.00	0.00	2023-03-07 00:04:49	• •	1261
	30	207			204	0.00	0.00	2023-03-07 00:04:59	0 🔻	1261

Export files with QA column updated, can subset out these columns in analysis

Visualization and Analysis

SENTINEL QA Tables


QA check of data quality and sensor operation

- Values out of range highlighted in red
- QA ranges determined by recent sensor studies
- Single sensor QA table
 - Confirm bump checks/calibrations
 - Ensure sensor operation is normal
- Collocated Sensors QA table
 - Check difference between sensor values

Time periods with canister collections: FALSE							
	Mean	Median	StdDev	Min	Max	DataComp	
ata Quality QA:							
Raw PID (ppb)	82.4	82.6	25.5	45	139.6	85	
BC PID (ppb)	40.9	40.7	25.1	4.1	97.2	85	
Raw PID (mV)	141.6	141.7	17.2	116.4	180.2	85	
Temp (Deg C)	13.5	13.5	0.3	12.8	14.1	85	
RH (percent)	53.4	53.3	1	51.4	55.4	85	
Pressure (mBar)	981	981	0.1	981	982	85	
WS (mph)	0.5	0.5	0.3	0	1.5	85	
WD (deg)	236.7	240.4	68.8	0	345.3	85	
perational QA:							
S1 temp (arb)	2168.4	2171	13.1	2142	2198	85	
S1 Heat (0-255)	18.1	18	1.1	16	21	85	
S1 Set (arb)	2168.3	2170	12.9	2140	2196	85	
Bat volt (V)	13.9	13.9	0.1	13.8	14.1	85	
Charge Current (mA)	114.8	10.1	176.8	0.1	508.5	85	
Operate Current (mA)	102	102	4.1	90.4	115.1	85	

Metadata Integration – Canister Data

- Lower-cost VOC sensor measurements are typically not speciated
- Triggered canister samples with laboratory analysis provide context to elevated signal
- SENTINEL detects canister trigger events and combines with VOC signal time series data

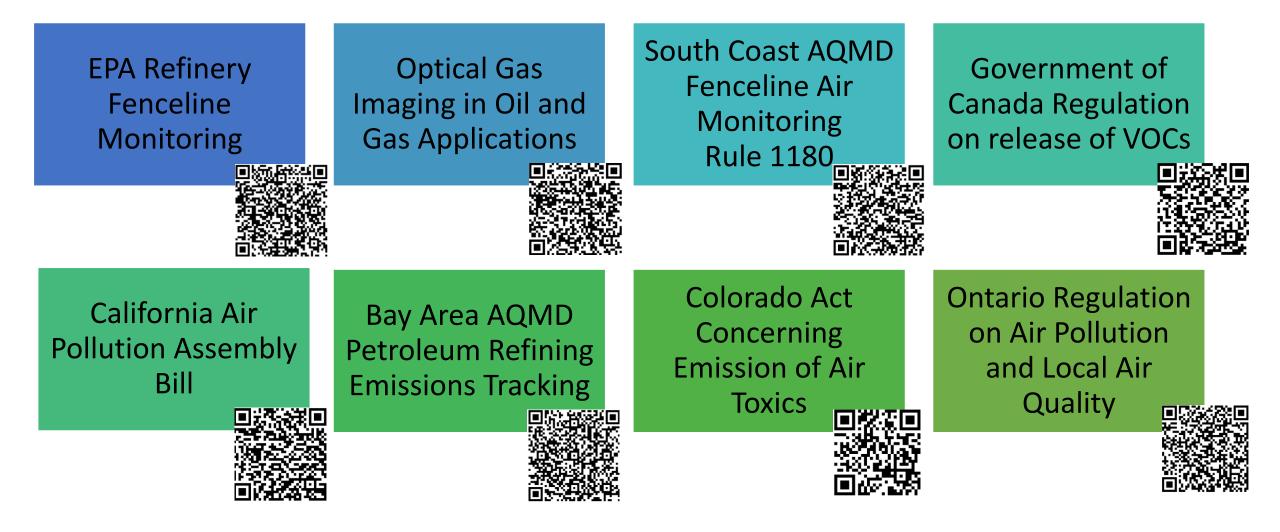
2022 SPod Research Study

SENTINEL Development Status

- Pilot user groups are currently testing SENTINEL Version 1.0 as part of an EPA Region 4 VOC Fenceline Sensor Loan program
- Possible app improvements:
 - Additional sensor types (i.e., methane)
 - Source back trajectory analysis
 - Source emission rate estimation
- For more SENTINEL info, contact: <u>macdonald.megan@epa.gov</u>

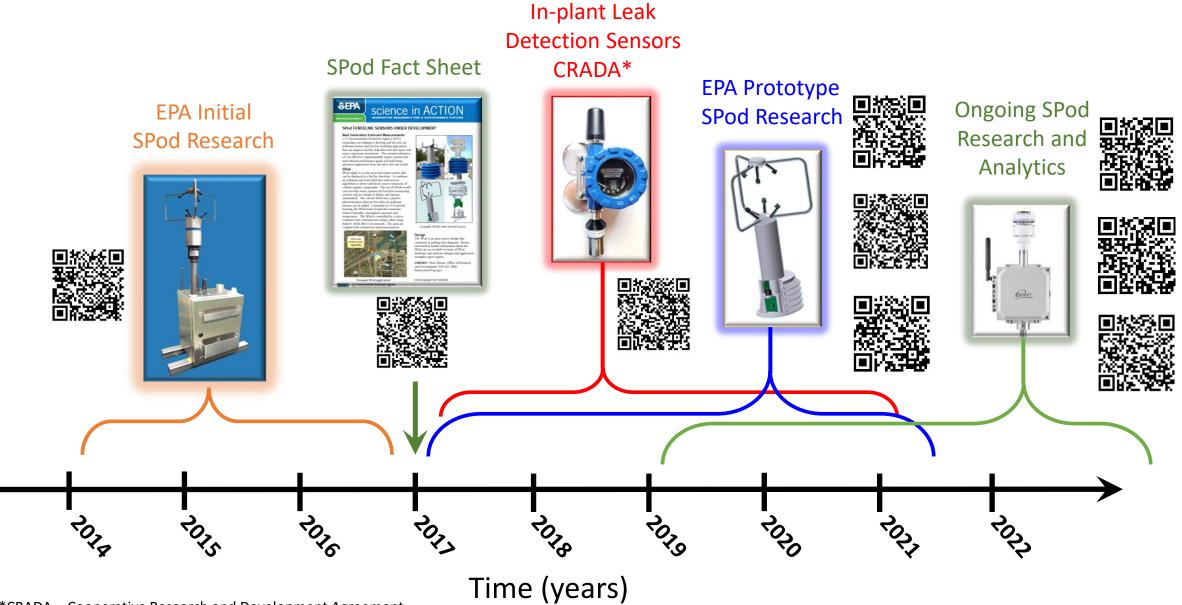
NGEM Tools & Training Webinar

NGEM Advancements Webinar (ORISE Meets the World)

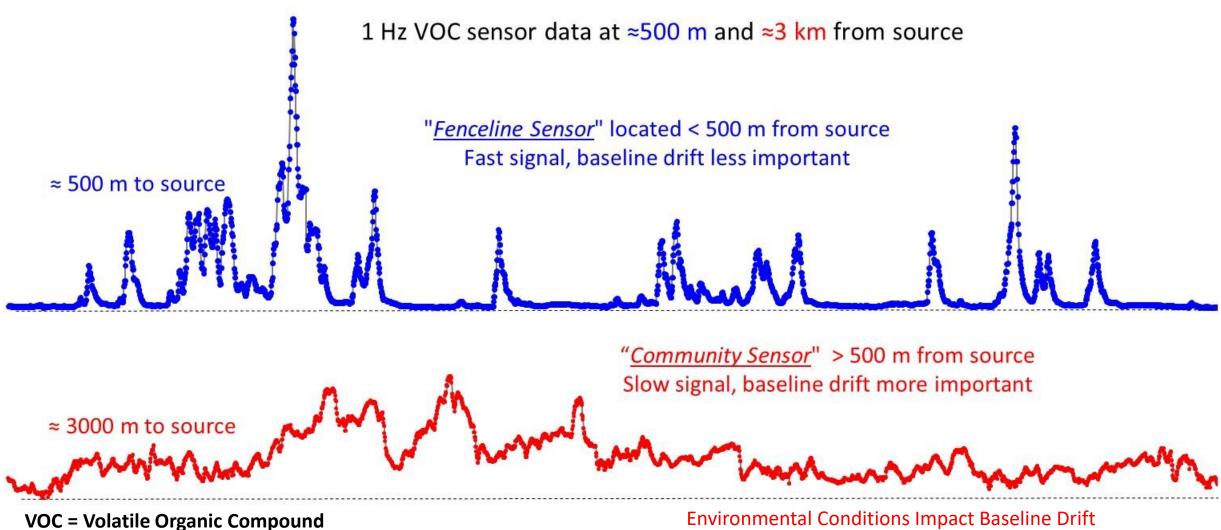


Additional Slides Below:

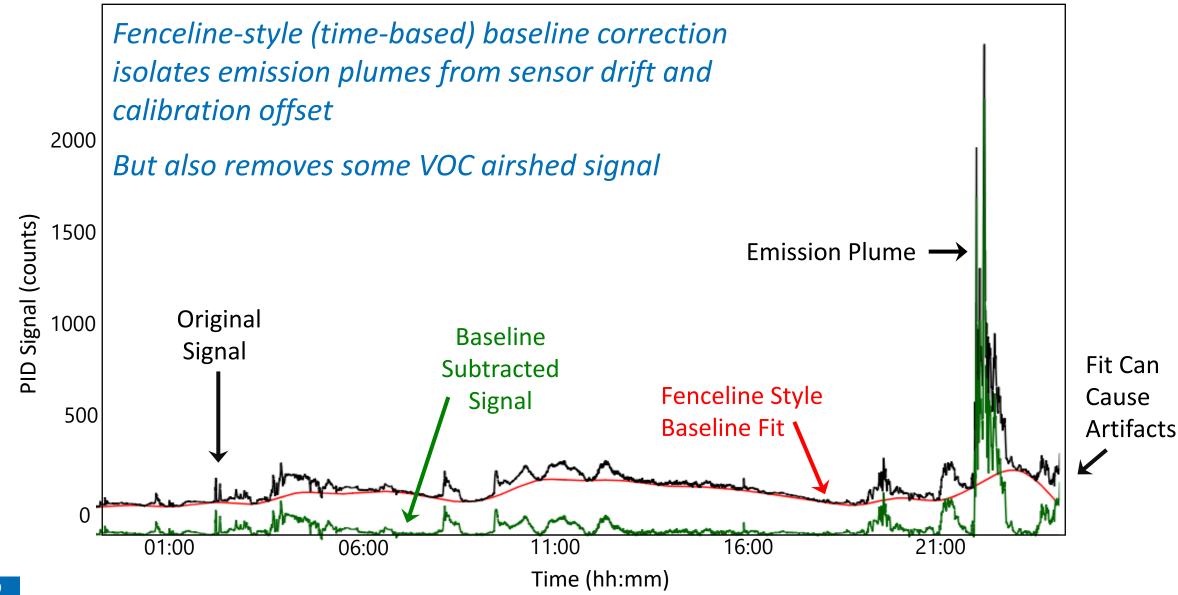
16


Regulations are Starting to use NGEM

17


SPod and Leak Detection Sensor Development

18


Sensor Data Analysis Changes with Distance

Simple Time-based Baseline Correction

